
AVL Trees

See Section 19.4of the text, p. 706-714.

AVL trees are self-balancing Binary Search Trees.
When you either insert or remove a node the tree
adjusts its structure so that the height remains a
logarithm of the number of nodes. No matter
what order we insert the nodes, we can search an
AVL in O(log(n)) time.

AVL trees were the first such self-balancing trees.
They were invented by Georgy Adelson-Velski and
Evgenii Landis 1962.

Definition: An AVL tree is a Binary Search Tree with
the additional property that for every node in the
tree, the left and right subtrees have height that
differ by at most 1. We say that the height of a null
tree is -1 and the height of a single node is 0; the
height of any other node is 1 more than the max of
the heights of its children. Here are some AVL trees

height 0 height 1

height 0

height 2

height 1

height 0 height 0

height 0

Here is a tree that is not an AVL tree; the children
of the root have heights that differ by 2:

height 3

height 2 height 0

height 1 height 1

height 0height 0

One issue with implementing AVL trees is having
access to the height of each node. We change the
Node class so it has fields

E data;
int height;
Node left, right;

We also change the insert() and remove()
methods to adjust the height at each node on the
path between the root and the modified node.
The recursive version of the insert method is easy
to modify. After we come back from the recursive
call we reevaluate the height:

private Node insert(E x, Node t) {
if (t == null) {

Node s = new Node(x);
s.height = 0;
return s;

}
else {

int comparison = x.compareTo(t.data);
if (comparison == 0)

t.data = x;
else if (comparison < 0)

t.left = insert(x, t.left);
else

t.right = insert(x, t.right);
t.height = 1+ max(height(t.left), height(t.right));
return t;

}
}

This much is easy; the interesting part of AVL
trees comes lies in the adjustments we need to do
when a tree becomes imbalanced. Consider
inserts. We have a balanced tree and insert a
node and the tree is then unbalanced. Since
inserting can add at most one to the height of a
subtree this must mean that we have a node Z on
the path between the root and the inserted node
where the height of one child is 2 more than the
height of the other. There are 4 possible cases:

a) The insertion was in the left subtree of the left
child of Z

b) The insertion was in the right subtree of the left
child of Z

c) The insertion was in the left subtree of the right
child of Z

d) The insertion was in the right subtree of the right
child of Z

Consider case (a):

Z

Y

X

height
h+1

height
h

height
h

Suppose that after the insert the left child of Node Z
has height h+2, while the right child has height h.

We modify this as follows:

Z

Y

X

height
h+1

height
h

height
h

Y

X

height
h+1

height
h

height
h

Z

a

b

a b

Note that we produce this new tree by just
reassigning a few pointers, so it is quick to
produce. It is easy to check that this is a BST tree,
and it now satisfies the AVL property: the two
children of the top node now have height h+1.
Note that the top node has height h+2, which is
what it had before the insertion, so no further
changes are needed in the tree.

Here is code for this:

Node rotateWithLeftChild(Node Z) {
Node Y = Z.left;
Z.left = Y.right;
Y.right = Z;
return Y;

}

Example:

23

17 45

9 21 32 61

4 13 22

2

23

17

45

9

21

32 61

4 13

222

Z

There is a symmetric case for inserting into the
right subtree of the right child of Z:

Z

Y

B X

height
h+1

height
h

A

Y

X

A
height

h+1

height
h

height
h

Z

B

height
h

The code for this is:

Node rotateWithRightChild(Node Z) {
Node Y = Z.right;
Z.right = Y.left;
Y.left = Z;
return Y;

}

We started out with 4 cases:
a) Insertion in the left subtree of the left child

of Z
b) Insertion in the right subtree of the left child

of Z
c) Insertion in the left subtree of the right child

of Z
d) Insertion in the right subtree of the right

child of Z

Our simple rotations have fixed cases (a) and (d).
The other cases are a bit more complex and
require a double rotation.

23

17 45

9 21 32 61

4 13 2219

20

Consider this example, where we have just inserted 20.
The left child of node 23 has height 3, the right child has
height 1.

23

17

45

9

21

32 61

4 13

22

19

20

We first do a rotation from node 21 to node 17, but that
doesn't fix the problem; the left child of 23 has height 3, the
right child height 1.

23

17

45

9

21

32 61

4 13

22

19

20

2317

45
9

21

32 61

4 13

2219

20

We then rotate node 21 to node 23 and this does
fix the problem:

In general, if we have a situation like this, where
we have inserted into the right child X of the left
child Y of Z, we first rotate node X to Y:

Z

Y

XA

B C

D

Z

Y

X

A B

C

D

Z

Y

X

A B

C

D ZY

X

A B C D

We then rotate node X to Z:

Now both children of the root have height h+1.

The code for this is simple:
Node doubleRotationWithLeftChild(node Z) {

Node Y = Z.left;
Node X = Y.right;
Z.left = rotateWithRightChild(Y);
return rotateWithLeftChild(Z);

}

Of course there is a symmetric method:
Node doubleRotationWithRightChild(node Z) {

Node Y = Z.right;
Node X = Y.left;
Z.right = rotateWithLeftChild(Y);
return rotateWithRightChild(Z);

}

In Lab 6 we have slightly different notation for this.
Let Z be the unbalanced node, let Y be Z's tallest
child, and let X be Y's tallest child. Now introduce
three new variables a, b, c where a is the one of X,
Y, Z with the smallest value, b the one with the
middle value, and c the one with the largest value.

For example, in this tree

Z

Y

X

height
h+1

height
h

height
h

We have a is X, b is Y, and c is Z.

Z

Y

X

In this tree

a is Y, b is X and c is Z.

We then let t1, t2, t3 and t4 be the left-to-right
children of nodes a, b and c. It turns out that all
four cases of our rotation can be reduced to
building the tree

ca

b

t1 t2 t3 t4

For example,

Z

Y

X

t1 t2

t3

t4 ZY

X

t1 t2 t3 t4

a

b

c b

a
c

Z

Y

Xt1

t2 t3

t4
ZY

X

t1 t2 t3 t4

a

b

c
b

a
c

Here is another example; the remaining two
cases are symmetrical to these

In Lab 6, once you have identified nodes a, b, and c,
and their children t1 through t4, code that is given
to you completes the rotation by building the
resulting tree in terms of these 7 variables.

